Aquinas’ Third Way argument II – Another counterexample

0. Introduction

In the previous post, I looked at Aquinas’ third way argument, as presented by apologist Tom Peeler. He proposed a causal principle, similar to what Aquinas proposed. Aquinas said:

“that which does not exist only begins to exist by something already existing”.

Peeler said:

“existence precedes causal influence”.

But basically, they are arguing for the same principle, namely:

Causal Principle) For something to begin to exist, it must be caused to exist by some pre-existing object.

From now on, let’s just call that ‘the causal principle’. Peeler was using this principle to support the first premise of his argument, which was:

“If there was ever nothing, there would be nothing now”.

The idea is that if Peeler’s principle were true, then the first premise is true as well. In the previous post, I argued that even if we accept all this, the argument does not show that an eternal being exists. Rather, it is compatible with an infinite sequence of contingent things.

In this post, I want to make a slightly different point. Up to now, we have conceded that the causal principle entails that there are no earlier empty times. However, I want to insist that this is only true if time is discrete. If time is continuous, then the causal principle dos not entail that there are no earlier empty times. I will prove this by constructing a model where time is continuous and at which there are earlier times which are empty, and later times which are non-empty, yet there is no violation of the causal principle.

  1. The causal principle

I take the antecedent of this conditional premise, i.e. “there was ever nothing”, to mean ‘there is some time at which no objects exist’, which seems like the most straightforward way of taking it. Therefore, if the causal principle is to support the premise, the causal principle must be saying that if an object begins to exist, then it must not be preceded by a time at which no objects exist.

Strictly speaking, what the principle rules out is empty times immediately preceding non-empty times. Take the following model, where we have an empty time and a non-empty time, but at which they are not immediately next to one another on the timeline. Say that t1 is empty, and t3 is non empty:

jdksjdksjd

In order to use the causal principle to rule this sort of model out, we need to fill in what is the case at t2. So let’s do that. Either t2 is empty, or it is not. Let’s take the first option. If t2 is empty, then t3 is immediately preceded by an empty time, and we have a violation of Peeler’s principle. Fair enough. What about the other option. Well, if t2 is non-empty, then t3 is not a case that violates Peeler’s principle, because it is not immediately preceded by an empty time. However, if t2 has some object that exists at it, then it is a case of a non-empty time immediately preceded by an empty time, because t1 is empty. Therefore, this second route leads to a violation of Peeler’s principle as well.

The point is that if all we are told is that there is some empty time earlier than some non-empty time, without being told that the empty time immediately precedes the non-empty time, we can always follow the steps above to rule it out. We get to a violation of the causal principle by at least one iteration of the sort of reasoning in the previous paragraph.

However, this whole way of reasoning presupposes that time is discrete rather than continuous. If it is continuous, then we get a very different verdict. That is what I want to explain here. If time is continuous, we actually get an even more obvious counterexample than model 2.

2. Discrete vs continuous

Time is either discrete, or it is continuous. The difference is like that between the natural numbers (like the whole integers, 1, 2, 3 etc) and the real numbers (which include fractions and decimal points, etc). Here is the condition that is true on the continuous number line, and which is false on the discrete number line:

Continuity) For any two numbers, x and y, there is a third number, z, which is in between them.

So if we pick the numbers 1 and 2, there is a number in between them, such as 1.5. And, if we pick 1 and 1.5, then there is a number in between them, such as 1.25, etc, etc. We can always keep doing this process for the real numbers. For the natural numbers on the other hand, we cannot. On the natural numbers, there just is no number between 1 and 2.

A consequence of this is that there is no such thing as the ‘immediate successor’ of any number on the real line. If you ask ‘which number is the successor of 1 on the real number line?’, there is no answer. It isn’t 1.01, or anything like that, because there is always going to be a number between 1 and 1.01, like 1.005. That’s just because there is always going to be a number between any two numbers on the real number line. So there is no such thing as an ‘immediate successor’ on the real number line.

Exactly the same thing imports across from the numerical case to the temporal case. If time is continuous, then there is no immediately prior time, or immediately subsequent time, for any time. For any two times, there is a third time in between them.

This already means that there cannot be a violation of Peeler’s principle if time is continuous. After all, his principle requires that there is no non-empty time immediately preceded by an empty time. And that is never satisfied on a continuous model just because no time is immediately preceded by any other time, whether empty or non-empty. However, even though the principle cannot be violated, this doesn’t immediately mean that it can be satisfied. It turns out, rather surprisingly, that it can be satisfied.

2. Dedekind Cuts

In order to spell out the situation properly, I need to introduce one concept, that of a Dedekind Cut. Named after the late nineteenth century mathematician, Richard Dedekind, they were originally introduced as the way of getting us from the rational numbers (which can be expressed as fractions) to the real numbers (some of which cannot be expressed as fractions). They are defined as follows:

A partition of the real numbers into two nonempty subsets, A and B, such that all members of A are less than those of B and such that A has no greatest member. (http://mathworld.wolfram.com/DedekindCut.html)

We can also use a Dedekind cut that has the partition the other way round, of course. On this version, all members of B are greater than all those of A, and B has no least member (A has a greatest member). This is how we will use it from now on.

3. Model 5

Let’s build a model of continuous time that uses such a cut. Let’s say that there is a time, t1, which is the last empty time, so that every time earlier than t1 is also empty. The rest of the timeline is made up of times strictly later than t1, and they are all non-empty:

sdds

The precise numbers on here are just illustrative. All it is supposed to be showing is that every time up to and including t1 is empty, and that every time after t1 is non-empty. There is no first non-empty time, just because there is no time immediately after t1 at all. But there is a last empty time, which is just t1.

This model has various striking properties. Obviously, because it is a continuous model, there can be no violation of Peeler’s principle (because that requires time to be discrete). However, it is not just that it avoids violating the principle in this technical sense. It also seems to possess a property that actively satisfies Peeler’s causal principle. What I mean is that on this model, every non-empty time is preceded (if not immediately) by non-empty times. Imagine we were at t1.01 and decided to travel down the number line towards t1. As we travel, like Zeno’s tortoise, we find ourselves halfway between t1.01 and t1, i.e. at t1.005. If we keep going, we will find ourselves half way between t1.005 and t1, i.e. t1.0025, etc. We can clearly keep on going like this forever. No matter how close we get to t1 there will always be more earlier non-empty times.

So the consequences can be expressed as follows. Imagine that it is currently t1.01. Therefore, it is the case that some object exists. It is also the case that at some time in the past (such as t1) no objects existed. Whatever exists now could have been brought into existence by previously existing objects, and each of them could have been brought into existence by previously existing objects, and so on forever. So, it seems like this model satisfies Peeler’s version of the causal principle, that existence precedes causal influence, and Aquinas’ version of the principle, that “that which does not exist only begins to exist by something already existing”. Both of these are clearly satisfied in this model, because whatever exists has something existing earlier than it. However, it does so even though there are past times at which nothing exists.

4. Conclusion

The significance of this is as follows. If we assume that time is discrete, then the causal principle entails that there are no empty earlier times than some non-empty time. So if t1 is non-empty, then there is no time t0 such that t0 is empty. So if time is discrete, then the causal principle entails premise 1 of the argument (i.e. it entails that “If there were ever nothing, there would be nothing now”).

But, things are different if time is continuous. In that case, we can have it that the causal principle is true along with there being earlier empty times. The example of how this works is model 5 above. Something exists now, at t1.01, and there are times earlier than this which are non-empty. Every time at which something exists has times earlier than it during which some existing thing could have used its causal powers to bring the subsequent thing into existence. There is never any mystery about where the causal influence could come from; it always comes from some previously existing object. However, there are also empty times on this model, i.e. all moments earlier than or equal to t1. This means that the antecedent of the conditional premise is true (“if there ever was nothing”), but the consequent is false (“there would be nothing now”). So even though the causal principle looks true, the first premise is false. So if time is continuous, then the causal principle (even if granted for the sake of the argument) does not entail the first premise, and so does not support it being true.

Aquinas’ Third Way Argument

0. Introduction

I recently listened to a podcast, where the host, David Smalley, was interviewing a christian apologist, Tom Peeler. The conversation was prefaced by Peeler making the claim that he could prove that God existed without the use of the bible.

The first argument offered by Peeler was essentially Aquinas’ ‘Third Way’ argument, but done in a way that made it particularly easy to spell out the problem with it. In fact, Peeler gave two arguments – or, rather, I have split what he said into two arguments to make it easier to explain what is going on. Once I have explained how the first argument fails, it will be obvious how the second one fails as well. The failures of Peeler’s argument also help us to see what is wrong with Aquinas’ original argument.

  1. Peeler’s first argument

Peeler’s first argument went like this (at about the 23 minute mark):

  1. If there were ever nothing, there would still be nothing
  2. There is something
  3. Therefore, there was never nothing

As Peeler pointed out, the argument is basically a version of modus tollens, and so is definitely valid. But is it sound? I will argue that even if we grant that the argument is valid and sound, it doesn’t establish what Peeler thinks it does.

Here is the sort of consideration that is motivating premise 1. In the interview, Peeler was keen to stress that his idea required merely the fact that things exist and the principle that “existence precedes causal influence”. There is an intuitive way of spelling out what this principle means. Take some everyday object, such as your phone. This object exists now, but at some point in the past it did not exist. It was created, or made. There is some story, presumably involving people working in a factory somewhere, which is the ‘causal origin’ of your phone. The important part about this story for our purposes is that the phone was created via the causal powers of objects (people and machines) that pre-existed the phone. Those pre-existing objects exerted their causal influence which brought the phone into existence; or, more mundanely, they made the phone. The idea is that for everything that comes into existence, like the phone, there must be some pre-existing objects that exert causal influence to create it. As Aquinas puts it: “that which does not exist only begins to exist by something already existing”.

One way to think about what this principle is saying is what it is ruling out. What it is ruling out is that there is a time where no objects exist at all, followed immediately by a time at which some object exists.

Imagine that at time t0, no objects exist at all. Call that an ‘empty time’. Then, at t1 some object (let’s call it ‘a‘) exists; thus, t1 is a ‘non-empty time’. This situation violates Peeler’s causal principle. This is because a has been brought into existence (it has been created), but the required causal influence has no pre-existing objects to wield it. We can picture the situation as follows:

asdada

At the empty time, t0, there is nothing (no object) which can produce the causal influence required to bring a into existence at t1. Thus, the causal influence seems utterly mysterious. This is what Peeler means by ‘nothing can come from nothing.’ So we can understand Peeler’s causal principle in terms of what it rules out – it rules out things coming into existence at times that are immediately preceded by empty times, or in other words it rules out non-empty times immediately following from empty times. Let’s grant this principle for the sake of the argument to see where it goes.

If we do accept all this, then it follows that from the existence of objects, such as your phone, that there can never have been a time at which no objects existed (i.e. that there are no empty times in the past). That’s because of the following sort of reasoning. If this time has an object, such as your phone, existing at it, then this time must not be preceded by a time at which no objects existed. So the phone existing now means that the immediately preceding time has objects existing at it. But the very same reasoning indicates that this prior time must itself be preceded by a time at which objects existed, and so on for all times.

We can put it like this: if this time is non-empty, then so is the previous one. And if that time is non-empty, then so is the previous one, etc, etc. Thus, there can never be an empty time in the past if this time is non-empty.

This seems to be the most charitable way of putting Peeler’s argument.

2. Modelling the argument

For all we have granted so far, at least three distinct options are still available. What I mean is that the argument makes certain requirements of how the world is, for it’s premises and conclusion to be true. Specifically, it requires that a non-empty time not be immediately preceded by an empty time. But there are various ways we can think about how the world is which do not violate this principle. A model is a way that the world is (idealised in the relevant way). If the model represents a way that the world could be on which the premises and conclusion of an argument are true, then we say that the model ‘satisfies‘ the argument. I can see at least three distinct models which satisfy Peeler’s argument.

2.1 Model 1

Firstly, it could be (as Peeler intended) that there is a sequence of non-necessary objects being caused by previous non-necessary objects, which goes back to an object which has existed for an infinite amount of time – an eternal (or necessary) object. Think of the times before t1 as the infinite sequence: {… t-2, t-1, t0, t1}. God, g, exists at all times (past and future), and at t0 he exerted his causal influence to make a come to exist at t1 alongside him:

jkdjks

On this model, there are no times in which an object comes into existence which are immediately preceded by an empty time, so this model clearly does not violate Peeler’s principle. Part of the reason for this is that there are no empty times on this model at all, just because God exists at each time. Anyway, the fact that this model doesn’t violate Peeler’s causal principle means that there is at least one way to model the world which is compatible with Peeler’s argument. The world could be like this, for all the truth of the premises and conclusion of Peeler’s argument requires.

But, this is not the only option.

2.2 Model 2

Here is another. In this model, each object exists for only one time, and is preceded by an object which itself exists for only one time, in a sequence that is infinitely long. Each fleeting object is caused to exist by the previous object, and causes the next object to exist. On this model there are no empty times, so it is not a violation of Peeler’s principle. Even though it does not violate the principle, at no point is there an object that exists at all times. All that exists are contingent objects, each of which only exists at one time.

Think of the times before t1 as the infinite sequence { … t-2, t-1, t0, t1}, and that at each time, tn, there is a corresponding object, bn:

dssds

Thus, each time has an object (i.e. there are no empty times) and each thing that begins to exist has a prior cause coming from an object. No object that begins to exist immediately follows from an empty time. Therefore, this model satisfies Peeler’s argument as well.

2.3 Model 3

There is a third possibility as well. It is essentially the same as the second option, but with a merely finite set of past times. So, on this option, there is a finitely long set of non-empty times, say there are four times: {t-2, t-1, t0, t1}. Each time has an object that exists at that time, just like in model 2. The only real difference is that the past is finite:

sjkdsj

In this case, t-2 is the first time, and b-2 is the first object.

However, there might be a problem with this third option. After all, object b-2 exists without a prior cause. It isn’t caused to exist by anything that preceded it (because there are no preceding times to t-2 on this model). Doesn’t this make it a violation the causal principle used in the argument?

Not really. All that Peeler’s causal principle forbids is for an object to begin to exist at a time immediately following an empty time. But because there are no empty times on this model, that condition isn’t being violated. Object b-2 doesn’t follow an empty time. It isn’t preceded by a time in which nothing existed. It just isn’t preceded by anything.

Now, I imagine that there is going to be some objection to this type of model. Object b-2 exists, but it was not caused to exist. Everything which comes into existence does so because it is caused to exist. But object b-2 exists yet is not caused to exist by anything.

We may reply that object b-2 is not something which ‘came into existence’, as part of what it is for an object x to ‘come into existence’ requires there to be a time before x exists at which it does not exist. Seeing as there is no time before t-2, there is also no time at prior to t-2 at which b-2 does not exist. So b-2 simply ‘exists’ at the first time in the model, rather than ‘coming into existence’ at the first time. Remember how Aquinas put it: “that which does not exist only begins to exist by something already existing”. There is no prior time at which b-2 is “that which does not exist”. It just simply is at the first time.

No doubt, this reply will seem to be missing the importance of the objection here. It looks like a technicality that b-2 does not qualify as something which ‘comes into existence’. The important thing, Peeler might argue, is that b-2 is a contingent thing that exists with no cause for it. That is what is so objectionable about it.

If that is supposed to be ruled out, it cannot be merely on the basis of Peeler’s causal principle, but must be so on the basis of a different principle. After all, Peeler’s principle merely rules out objects existing at times that are preceded by empty times. That condition is clearly not violated in model 3. The additional condition would seem to be that for every non-necessary object (such as b-2), there must be a causal influence coming from an earlier time. This principle would rule out the first object being contingent, but it is strictly more than what Peeler stated he required for his argument to go through.

However, let us grant such an additional principle, just for the sake of the argument. If we do so, then we rule out models like model 3. However, even if we are kind enough to make this concession, this does nothing to rule out model 2. In that model, each object is caused to exist by an object that precedes it in time, and there are no empty times. Yet, there is no one being which exists at all earlier times (such as in model 1).

The existence of such an eternal being is one way to satisfy the argument, but not the only way (because model 2 also satisfies the argument as well). Thus, because model 2 (which has no eternal being in it) also satisfies the argument, this means that the argument does not establish the existence of such an eternal being.

So, even if we grant the premises of the first argument, it doesn’t establish that there is something which is an eternal necessary object. It is quite compatible with a sequence of merely contingent objects.

2. Peeler’s second argument

From the conclusion of the first argument, Peeler tried to make the jump to there being a necessary object, and seemed to make the following move:

  1. There was never nothing
  2. Therefore, there is something that has always been.

The fact that the extra escape routes are not blocked off by the first argument, should give you some reason to expect the inference in the second argument to be invalid. And it is. It is a simple scope-distinction, or an instance of the ‘modal fallacy’.

There being no empty times in the past only indicates that each time in the past had some object or other existing at it. It doesn’t mean that there is some object in particular that existed at each of the past times (such as God). So long as the times are non-empty, each time could be occupied by an object that exists only for that time (as in our second and third models), for all the argument has shown.

The inference in the second argument is like saying that because each room in a hotel has someone checked in to it, that means that there is some particular individual person who is checked in to all of the rooms. Obviously, the hotel can be full because each room has a unique individual guest staying in it, and doesn’t require that the same guest is checked in to every room.

When put in such stark terms, the modal fallacy is quite evident. However, it is the sort of fallacy that is routinely made in informal settings, and in the history of philosophy before the advent of formal logic. Without making such a fallacious move, there is no way to get from the conclusion of Peeler’s first argument to the conclusion of the second argument.

3. Aquinas and the Third Way

In particular, medieval logicians often struggled with scope distinctions, as their reasoning was carried out in scholastic Latin rather than in symbolic logic. That they managed to make any progress at all is testament to how brilliant many of them were. Aquinas is in this category, in my view; brilliant, but prone to making modal fallacies from time to time. I think we can see the same sort of fallacy if we look at the original argument that is motivating Peeler’s argument.

Here is how Aquinas states the Third Way argument:

“We find in nature things that are possible to be and not to be, since they are found to be generated, and to corrupt, and consequently, they are possible to be and not to be. But it is impossible for these always to exist, for that which is possible not to be at some time is not. Therefore, if everything is possible not to be, then at one time there could have been nothing in existence. Now if this were true, even now there would be nothing in existence, because that which does not exist only begins to exist by something already existing. Therefore, if at one time nothing was in existence, it would have been impossible for anything to have begun to exist; and thus even now nothing would be in existence — which is absurd.” Aquinas, Summa Theologiae, emphasis added)

This argument explicitly rests on an Aristotelian notion of possibility. The philosopher Jaakko Hintikkaa explains Aristotle’s view:

“In passage after passage, [Aristotle] explicitly equates possibility with sometime truth, and necessity with omnitemporal truth” (The Once and Future Seafight, p. 465, emphasis added)

This is quite different from the contemporary view of necessity as truth in all possible worlds. On the contemporary view, there could be a contingent thing that exists at all times in some world. Therefore, being eternal and being necessary are distinct on the modern view, but they are precisely the same thing on the Aristotelian view. We will come back to this in a moment. For the time being, just keep in mind that Aquinas, and by extension Peeler, are presupposing a very specific idea of what it means to be necessary or non-necessary.

We can see quite explicitly that Aquinas is using the Aristotelian notion of necessity when he says “…that which is possible not to be at some time is not”. This only makes sense on the Aristotelian view, and would be rejected on the modern view. But let’s just follow the argument as it is on its own terms for now.

The very next sentence is: “Therefore, if everything is possible not to be, then at one time there could have been nothing in existence.” What Aquinas is doing is imagining what would be the case if all the objects that existed were non-necessary objects. If that were the case, then no object would exist at every time, i.e. each object would not exist at some time or other. That is the antecedent condition Aquinas is exploring (i.e. that “everything is possible not to be”).

What the consequent condition is supposed to be is less clear. As he states it, it is “at one time there could have been nothing in existence”. We can read this in two ways. On the one hand he is saying that if everything were non-necessary, then there is in fact an earlier time that is empty. On the other hand, he is saying that if everything were non-necessary, there could have been an earlier time that is empty.

Let’t think about the first option first. It seems quite clear that it doesn’t follow from the assumption that everything is non-necessary that there is some time or other at which nothing exists. Model 2 is an example of a model in which each object is non-necessary, but in which there are no empty times. If Aquinas is thinking that “if everything is possible not to be, then at one time there could have been nothing in existence” means that each object being non-necessary implies that there is an empty time, then he is making a modal fallacy. This time, the fallacy is the other way round from Peeler’s example: just because each guest is such that they have not checked into every room of the hotel, that does not mean there is a room with no guest checked in to it. Think of the hotel in which each room has a unique guest in it. Exactly the same thing applies here too; just because every object is such that it fails to exist at some time, that does not mean that there is a time at which no object exists. Just think about model 2, in which each time has its own unique object.

Thus, if we read Aquinas this first way, then he is committing a modal fallacy.

So let’s try reading him the other way. On this reading he is saying that the assumption that everything is non-necessary is compatible with there being an empty time. One way of reading the compatibility claim is that there is some model on which the antecedent condition (that every object is non-necessary) and the consequent condition (that there is an empty time) are both true. And if that is the claim, then it is quite right. Here is such a model (call it model 4):

sdsdsd

On this model, there are two objects, a and b, and they are both non-necessary (i.e. they both fail to exist at some time). Also, as it happens, there is an empty time, t2; both a and b fail to exist at t2. So on this model, the antecedent condition (all non-necessary objects) and the consequent condition (some empty times) are both satisfied.

However, while this claim is true, it is incredibly weak. The difference is between being ‘compatible with’ and ‘following from’. So for an example of the difference, it is compatible with me being a man that my name is Alex; but it doesn’t follow from me being a man that my name is Alex. If we want to think about the consequent following from the antecedent condition, we want it to be the case that every model which satisfies the antecedent condition also satisfies the consequent condition, not jus that there is some model which does. But it is clearly not the case that every model fits the bill, again because of model 2. It satisfies the condition that every object is non-necessary, but it doesn’t satisfy the condition that there are some empty times.

So what it comes down to is that the claim that there are only non-necessary objects is compatible with the claim that there are empty times, but it is equally compatible with the claim that there are no empty times. Being compatible with both means that it is simply logically independent of either. So nothing logically follows from the claim that there are only non-necessary objects about whether there are any empty times in the past or not.

So on the first way of reading Aquinas here, the claim is false (because of model 2). On the second way of reading him, the claim is true, but it is logically independent of the consequent claim. On either way of reading him, this crucial inference in the argument doesn’t work.

And with that goes the whole argument. It is supposed to establish that there is an eternal object, but even if you grant all of the assumptions, it is compatible with there not being an eternal object.

4. Conclusion

Peeler set out an argument, which was that if nothing ever existed, there would be nothing now. The truth of the premises and the conclusion is satisfied by, or compatible with, model 2, and so does not require that an eternal object (like God) exists. The second argument was that if it is always the case that something exists, then there is something which always exists. That is a simple modal fallacy. Lastly, we looked at Aquinas’ original argument, which either commits a similar modal fallacy, or simply assumes premises which do not entail the conclusion.

 

The argument from contingency

0. Introduction

The ‘argument from contingency’ is a version of the cosmological argument. It has various forms, and historians of philosophy trace it as far back as Avicenna in the 10th century. It is one of Aquinas’ five proofs, and is part of the repertoire of the classical apologetical method. I have an objection that I will explain here. It is probably not new (as it is such an old argument), but I like it, so I want to spell it out.

  1. The argument

There are various ways to phrase the argument, and there will doubtless be ways to spell it out that avoid my particular objection, but this is a classic way of presenting the argument.

The driving idea is that the universe, if its existence is contingent (i.e. if its existence is neither necessary nor impossible), requires an explanation. Contingent things cannot just exist with no reason for them. Take this pillow. Its existence is contingent, in that it could have not existed. The fact that it does exist is a fact which can be explained (at least in principle); there is some answer to the question ‘why does this pillow exist?’. One way of thinking about the explanation for its existence is in terms of the causal conditions that brought it into existence. So perhaps it was made in a factory, by some Chinese pillow-manufacturer or whatever. There is some causal story we could tell which would explain why this pillow exists. Not only that, but it has to have some story or other like this which explains its existence. If it wasn’t made in a Chinese factory, then it was made somehow, somewhere. It couldn’t be that it just was. A thing which is contingent, whose existence is neither necessary nor impossible, but which just existed for no reason, is (so the argument goes) itself impossible. Contingent things, like pillows, porcupines, pineapples, or people, etc, are contingent, and they all have explanations for their existence. Sometimes, this principle is called the ‘principle of sufficient reason’.

But consider something whose existence is necessary; something which couldn’t not exist.  Let’s say that the number 9 exists (it doesn’t matter if you don’t like this example, just plug in your own favourite example of something which necessarily exists). If the number 9 exists, its existence is not the sort of thing that could have failed to be the case. No matter what happens in the world, no matter the coming or goings of physical things, the existence of the number 9 is completely independent of it. Thus, there could be no causal explanation for the number 9, as it exists over and above the causal chains that contingent things exist within the world. It doesn’t make sense to explain why something exists, if it couldn’t not exist. Unlike contingent things, like me or my pillow, there is no answer to the question: ‘why does the number 9 exist?’.

Given this distinction between contingent things, whose existence requires explanation, and necessary things, whose existence doesn’t require explanation, we seem to be faced with a trilemma. That is, there seem to be only three possible options. The options seem to be:

  1. Each contingent thing has as its explanation another contingent thing. So my pillow was made by a person, who was made by another person, and ultimately life was created by contingent physical processes, which themselves were contingent outcomes of contingent events. The chain of contingent things stretches back forever, with each contingent thing having a contingent explanatory thing that it depends on for its existence.
  2. Most contingent things have as their explanation other contingent things, but the chain of dependency doesn’t go backwards forever; rather, it terminates at some point. The point at which the chain terminates is itself a contingently existing thing. Perhaps there was a burst of energy at the big bang, which was itself a contingently existing thing, but (contra the principle of sufficient reason) the existence of this thing has no explanation whatsoever. It just happened for no reason.
  3. Most contingent things have as their explanation other contingent things, but the chain of dependency doesn’t go backwards forever; rather, it terminates at some point. The point at which the chain terminates is itself a necessarily existing thing. This necessarily existing thing is the ultimate cause and explanation for the existence of all of the contingently existing things. Let’s call this first mover, this necessarily exiting thing, ‘God’.

It seems that these are the only possible options, and so all one has to do to prove that God exists is to rule out the first two options. Here, the principle of sufficient reason does most of the heavy lifting. Take option 2. The idea of something contingent just happening for no reason is supposed to be impossible. Contingent things don’t just happen. Imagine you came across a pattern in the sand while walking along the beach that read ‘Hello’. This is obviously the sort of thing that could have not existed, and so it is a contingently existing thing. It is also the sort of thing that it would make sense to ask ‘why does this exist?’, and there will be an answer to this question. Someone probably drew the lines in the  sand with a stick. It may have happened by some very unlikely process of the wind working in just the right way so as to make the letters appear in the sand. However it happened though, there is some explanation for it. It couldn’t be that it exists but without an explanation. It would be like thinking that each domino fell because the previous one fell into it, but that at some point a domino just falls over without anything falling into it, for no reason.

Similar reasoning applies to option 1. Obviously, in this case (unlike in option 2) there is no contingently existing thing that has no explanation for its existence; each contingently existing thing has a contingently existing thing as the explanation for its existence. So on this picture, each thing has an explanation. However, there is no explanation for why the whole sequence of contingent things exists. Where did it come from, ultimately? As the infinite chain of contingent things recedes off into the distance, one is left with the feeling that this infinite bunch of contingency is just as strange as the brute contingent fact that we found so strange in option 2. If the dominos each fall because the previous one fell into it, and this goes on forever without a starting point, it is ultimately a complete mystery why any of them started to fall over at all.

The last option then is the only one that could have any hope of offering any explanation for the contingency of the world. On this option, the necessarily existing starting point caused the first contingent thing to exist; it pushed the first cosmic domino over. As it is not a contingently existing thing, it doesn’t require an explanation for it’s own existence, so the termination point of the chain is not arbitrary, as on option 2. Thus we seem to have found the only option that is acceptable, according to the principle of sufficient reason. There are contingently existing things in the world (like pillows), so there must have been a necessarily existing thing that caused them to come into being.

2. Some Responses 

So how should someone respond to this argument? One could of course reject the idea that contingently existing things need an explanation. This would allow one to embrace option 2. The problem with this is supposed to be that the idea that contingently existing things require explanations is a fundamental assumption to science, and to any rational understanding of the world. If things could just exist without explanation, then there would be no way of knowing with any given contingent thing whether it was one of those things. One would always have to wrestle with the option that the given phenomenon, such as the spread of the disease across the population, or the fact that the bowling ball falls to the earth with such and such velocity, could just be a brute fact with no explanation. Science, it seems, requires that option 2 is false.

One could accept the idea that contingently existing things require an explanation, but reject the idea that there are contingently existing things at all. Maybe there is just the appearance of contingency, whereas in reality everything is necessary. The cost of this view is that it seems intuitively very obvious that most things are only contingently existing. Most of them could not exist. It is obviously possible that I could have not existed. In fact, if you consider how many contingent things are required for my existence, my parents meeting, their parents meeting, their parents meeting, etc, my existence should be almost impossibly unlikely. I quite obviously do not exist necessarily. Saying that everything which exists does so necessarily seems very hard to maintain.

Lastly, one could try to opt for option 1, where each domino falls because of the previous one, in a never ending sequence back into infinity. Here, the well-rehersed absurdities resultant from infinite sequences come into play. Imagine someone who was counting up from minus-infinity. As you come across him you hear him saying ‘…minus 3, minus 2, minus 1, 0 …’. The idea that he has come to 0 at the precise moment that you come across him seems to have no explanation. Why had he not arrived at this point before? Why does he not come to this point tomorrow instead? After all, it must have taken him an infinite amount of time for him to get here, whether he got here yesterday, today or tomorrow. There can be no explanation for one over the other. Thus, we seem to be back in the boat of option 2.

3. My response

My response is not to take any of these options. I do not really offer a solution to the problem as such. My tactic is to point out that option 3 is no better off than options 1 or 2. Here is how I see the problem. On this option it is God, the necessarily existing thing, that set the contingent sequence of things off. But when he did so, what was the nature of the choice? Specifically, was there something in virtue of which God made the choice to create this sequence of contingent things rather than another sequence, or rather than no sequence at all? There seem to be two options here:

i) Yes, there was something in virtue of which God made this choice.

ii) No, there was nothing in virtue of which God made this choice.

Note, that we are not asking whether there is something that explains God’s existence. We do not need to say that God is not necessary, or that necessary things require explanations. Rather, we are asking whether God’s choice is the sort of thing that has an explanation.

Let’s explore option i). On this view, God made his choice because of something; there is something which explains his choice. Familiar candidates for such a thing might include his nature (perhaps he is by nature something which wants to be in a loving relationship with certain contingent things), or God’s nature plus the nature of this world (perhaps God always wants the best thing, and perhaps this is the best of all possible worlds). On any view like this, it seems that God’s choice is not completely free. In some sense he has to make this choice, as a result of his nature. If that is right, then the existence of the world, and all the apparently contingent things in it, is in fact necessary; they had to happen, and couldn’t have not happened. The existence of the world is as necessary as the existence of the first mover. Neither could happen without the other.

Let’s look at option ii). On this view, there is nothing in virtue of which God made the world. He chose to make this world completely free of any determining factor. He wasn’t dictated by his nature, or by the nature of the world. He could have made any world just as easily as this. On this view, there is nothing which explains why he made this world rather than another, or rather than none at all. On this world, the existence of the universe is indeed contingent, but also without explanation, which violates the principle of sufficient reason after all.

4. Conclusion

Thus, it seems that the third option in our original trilemma really has nothing to offer over and above the first two. If the chain of contingent things terminates in a necessarily existing thing, then either the existence of the world is itself necessary and thus requiring no explanation, or contingent but itself without an explanation.